

1 The Energy Transition: A Paradigm Shift from Emissions to 2 Resources with CO₂ as a Critical Resource Among Others

3

4 Jan Mertens^{a,b,*} and Koenraad Debackere^c

5

^a ENGIE Research, 1 pl. Samuel de Champlain, 92930 Paris-la Défense, Paris, France

^b Department of Electromechanical, system and metal engineering, Ghent University, Technologiepark Zwijnaarde 131, Zwijnaarde, Belgium

⁹ ^c KU Leuven, ECOOM, Department of Managerial Economics, Strategy and Innovation, Faculty of Economics and Business,
¹⁰ Naamsestraat 69, BE-3000 Leuven, Belgium

11

12 * Corresponding author: Jan Mertens, ENGIE Research and Innovation, 1 pl. Samuel
13 de Champlain, 92930 Paris-la Défense, Paris, France. Tel. +32 473 33 70 22, E-mail:
14 mertensja@yahoo.co.nz

15

16

17

18

10

20

1

22 **Keywords**

23 Energy transition, Carbon Capture and Utilisation, Hydrogen, Renewable Fuels,
24 Renewable energy, Materials criticality, Mining, Mineral processing

25 **Abstract**

26 Scientific evidence underscores the urgent need to reduce CO₂ emissions by over 90% to
27 achieve climate goals. Key strategies include enhancing energy efficiency, expanding
28 renewable electricity production, and recognizing the importance of molecules. While
29 hydrogen is pivotal as an e-molecule, challenges persist in its storage and transportation.
30 Transforming hydrogen into hydrocarbons using CO₂ is a rational approach, especially
31 for energy-intensive tasks like shipping, aviation, and long-term energy storage/transport.
32 CO₂ is set to become a crucial asset in the shift toward sustainable energy. However,
33 achieving carbon neutrality also involves addressing critical raw material (CRM) supply
34 chain challenges. Strategies like material efficiency and substitutivity are short-term
35 solutions, but we must also consider environmental and social consequences in material
36 lifecycle activities, including mining operations.

37

38 **1. Context**

39 There is ample scientific evidence (*IPPC, 2023*) that to reach our climate ambitions, the
40 first and foremost focus should be on the reduction of our current CO₂ emissions (± 40
41 Gtonnes today) by more than 90 %. In February 2024, the European Commission
42 presented its assessment for a 2040 climate target for the EU and thereby
43 recommended reducing the EU's net greenhouse gas emissions by 90% by 2040 relative
44 to 1990. To reach full carbon neutrality by 2050, some atmospheric CO₂ will need to be
45 captured and stored. So-called Negative Emissions Technologies (NET's) will be required
46 to compensate for those last few Gtonnes of yearly CO₂ emissions. There is a growing

47 consensus on the pathways toward 90+ % emission reduction, whereby the order is
48 important (*Mertens et al., 2023*):

- 49 1. First, we must (continue to) increase the energy efficiency of all activities and
50 processes while providing the energy services for an increasing world
51 population. Energy efficiency implies efficient end use, but also efficient
52 conversion of primary energy to energy services. Energy efficiency remains a
53 priority.
- 54 2. The share of renewable electricity production must be increased to directly
55 electrify as many processes and applications as possible. This effort must go
56 far beyond electrical transportation to include building heating and cooling,
57 as well as many industrial and agricultural processes and water management,
58 treatment, and irrigation to cope with droughts, including seawater
59 desalination. The transmission accompanying the “electrification first”
60 paradigm necessitates a strong, complementary focus on grid development,
61 investment, and roll-out.
- 62 3. For processes where high energy density is crucial or for the chemical
63 industry where hydrocarbons are needed as a feedstock or for the storage of
64 energy over longer time periods, the need for molecules will remain
65 important and will require innovative solutions to feedstocks and production.

66

67 On our path to carbon neutrality, energy efficiency and electrification remain of utmost
68 importance, and it is why we order them as number 1 and 2 in the above priority list.
69 Recently, studies have pointed to the supplementary challenges given the huge amounts

70 of critical raw materials renewable energy and transmission technologies require as
71 compared to fossil-based ones. This not only holds for the technologies related to
72 electrification using renewables (wind power, solar photovoltaics, batteries, ...) but also
73 for the sustainable molecules needed where direct electrification cannot do the job
74 (electrolysers, hydrogen production, transport and storage, catalysts for CO₂
75 methanation or ammonia production, ...). We refer to this challenge as 'From Emissions
76 to Resources' (*Mertens et al., 2024*) since the journey towards carbon neutrality through
77 the reduction of greenhouse gas emissions must tackle the growing resource challenge
78 of critical raw materials (CRMs). There is little scientific doubt that the geological
79 reserves of materials are sufficient to meet estimated future demand (*Wang et al., 2023*)
80 with a set of actions (*Breyer et al., 2022*). This demand comes with an increase in
81 emissions related to this material production, but is limited in magnitude when
82 compared to the continued use of fossil-fuel based energy technologies (*Wang et al.,*
83 *2023*). Tangential to these opportunities, geopolitical tensions impose stress on global
84 materials supply chains.

85

86 Hydrogen has long been considered the most prominent e-molecule in the third
87 pathway since it can be synthesised from renewable electricity and water, anywhere in
88 the world where cheap renewable electricity and water are available. However, as
89 argued in this chapter, due to its low volumetric energy density and the challenges
90 related to its storage and transport, converting green hydrogen produced under those
91 proximity conditions in combination with CO₂ (or N₂) into high energy dense molecules
92 (e.g. methane, methanol, ammonia, jet fuel, ...) will be critical to the success of the
93 molecular pathway. This is particularly true for applications that require high energy

94 density, e.g., shipping, aviation, high temperature processes, feedstock for chemistry,
95 high-temperature heat, among others, or for the transport and storage of renewable
96 energy over longer distances and time periods.

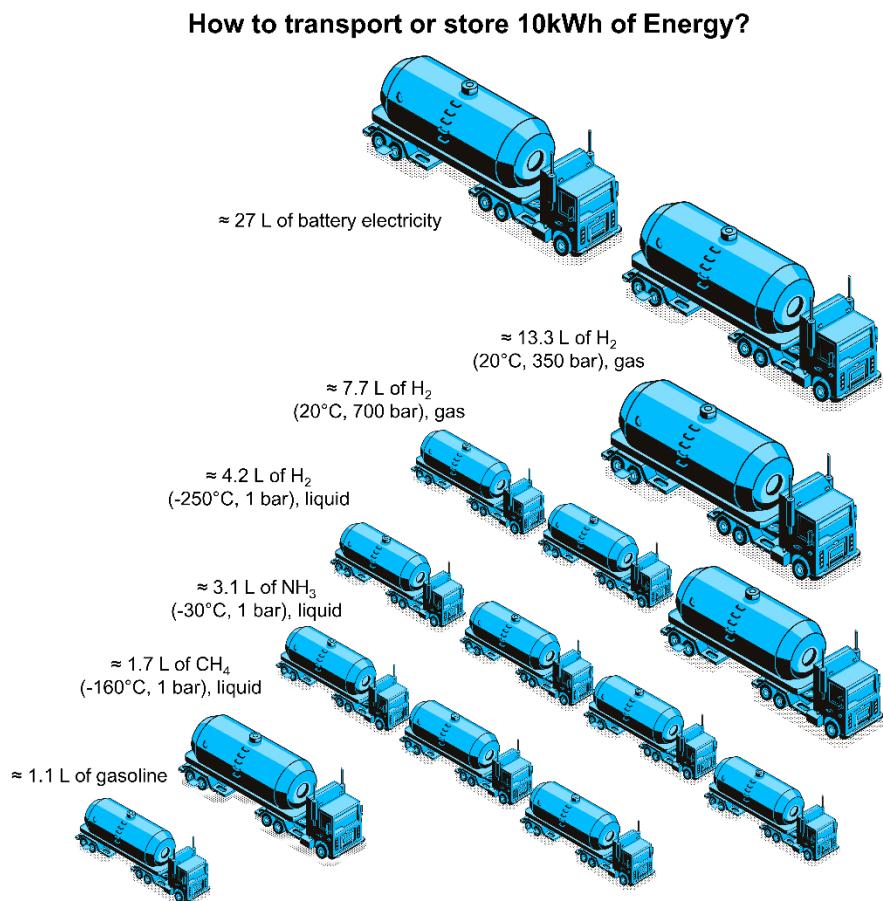
97

98 We will highlight that to succeed in the energy transition we must (i) consider CO₂ as a
99 resource and not only as THE problem and (ii) accelerate the development of solutions
100 to reduce supply chain vulnerabilities of resources, particularly the ones related to raw
101 materials.

102

103 **2. From Emissions to resources: CO₂ as a critical
104 resource?**

105


106 To get access to sustainable molecules, various options exist: biofuels based on wastes
107 and residues (such as biomethane, bioethanol, biodiesel, ...) and electricity-based e-fuels
108 (such as hydrogen or hydrogen-derived molecules made from electricity). Biofuels are
109 useful drop-in alternatives, but are limited on a global scale, because of competition
110 with land use for food. Green hydrogen, that is hydrogen made from water electrolysis
111 powered by renewable electricity, is a prominent e-molecule that has captured the
112 attention of policymakers.

113

114 **2.1 CO₂ makes it easier to store and transport hydrogen**

115

116 Figure 1 summarizes the volumetric challenges by illustrating the volumes needed to
117 store or transport 10 kWh of energy using different energy vectors (*Mertens et al.*,
118 2020): battery electricity, hydrogen (liquid or under pressure), liquid ammonia (NH₃),
119 LNG (liquefied natural gas), and petrol (representing a wide variety of hydrocarbons).
120 Table 1 complements this figure by complementing the volumetric energy density with
121 the gravimetric energy density or specific energy of the different energy vectors.

122

123 *Figure 1 Transport or storage volume of 10 kWh of energy using different energy carriers.*

124 The higher the energy density values listed in Table 1, the more useful a carrier becomes
125 as an energy service supplier. They become easier, and hence more convenient, to store
126 and transport. Current battery technologies are not as energy dense as typical

127 “molecules”. Battery storage of large amounts of energy implies enormous volumes and
128 weights, making electricity very hard to transport over long distances (e.g., between
129 continents) or store over long time periods.

130 *Table 1. Specific energy and energy density of energy carriers.*

Energy Carrier	Specific Energy kWh kg ⁻¹	Energy Density kWh L ⁻¹
Li-ion Battery electricity (average value)	0.3	0.5
Methanol	5.5	4.3
Methane (1 atm, 15 °C)	15.4	0.01
Liquified Natural Gas (LNG) (at -160 °C)	14.9	6.2
Liquid NH ₃	5.2	3.2
Jet Fuel	11.9	9.7
Hydrogen liquid (LHV)	33.3	2.4
Hydrogen at 1 atm @ 15.5 °C (LHV)	33.3	0.003
Hydrogen at 690 atm @ 15.5 °C (LHV)	33.3	1.2
Gasoline	12.9	9.5

131
132 Under normal conditions, the volumetric density of hydrogen is extremely low, requiring
133 enormous volumes for storage and flows in pipes. Increasing pressure up to 700 bar can
134 relieve these problems somewhat, but it remains one-eighth the density of gasoline,
135 which lowers its transportation utility drastically. While the low boiling temperature of
136 hydrogen (-255 °C) makes its liquefaction energy intensive compared to LNG (liquefied
137 natural gas). The low boiling temperature of hydrogen and reactivity also creates non-
138 trivial challenges for the materials used in containments, pumps, and compressors (*Yin*
139 *and Yu, 2019*).

140
141 But hydrogen is the building block for other molecules—the so-called hydrogen carriers
142 such as methane (CH₄), ammonia (NH₃), methanol (CH₃OH), and formic acid (CH₂O₂)—
143 that could be used for chemicals, energy storage, and energy transport. Hydrogen

144 therefore holds great promises as a fuel and chemical feedstock—but not necessarily as
145 an energy carrier. However, the need for energy transport will remain important in the
146 energy transition and it will imply moving (renewable) energy from places where it is
147 abundant and cheap (e.g., with high solar irradiation) to areas where demand is high
148 (e.g., highly populated areas and industrial clusters). The Middle East, Chili, Australia,
149 and others are considered potential sources of significant solar electricity. It is evident
150 that electricity is not an option to bring renewable energy from Australia to North
151 America or Europe. To bring energy to Europe from locations with excess renewable
152 energy, two possibilities exist: HVDC electrical transport or chemical energy, i.e.,
153 molecules. Many authors look to hydrogen when considering molecule-based energy
154 transport. However, it must be **analysed** whether this is, energy-wise, including the
155 quality of energy, the best option.

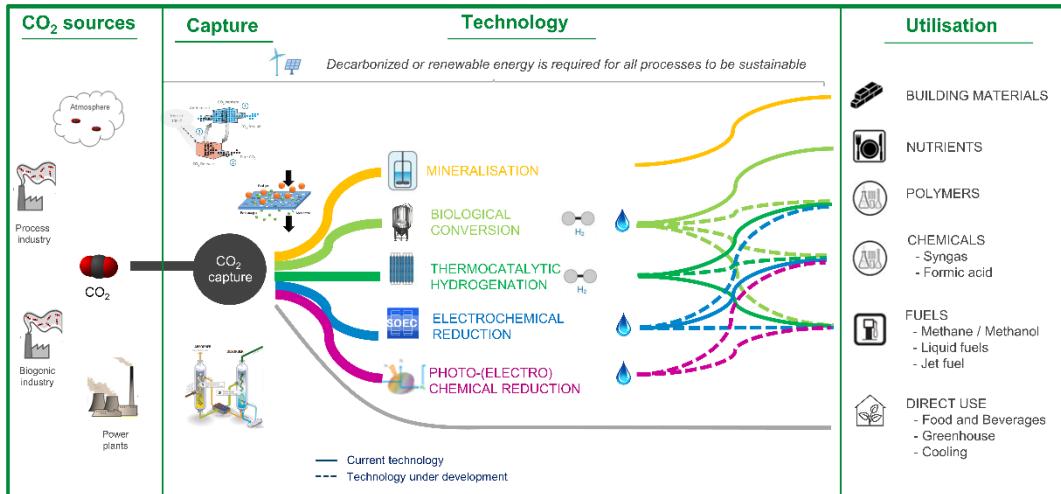
156

157 When the hydrogen molecule route is chosen, electrolysis is used as a first step, to
158 produce H₂ out of H₂O. The efficiency for electrolysis is assumed to be 70%. Cryogenic
159 transport with ships is the most efficient way to bring the hydrogen to Europe. Due to
160 the extremely low boiling temperature of hydrogen (-255 °C), its liquefaction is very
161 energy demanding. Different values are found in the literature. We assume a value of
162 70% for this step. The energy use for transport is estimated at 10%, i.e., an efficiency of
163 90%. This efficiency includes the energy needed to bring the hydrogen by pipes to the
164 coast where liquefaction takes place. The evaporation requires another 5% of energy
165 leading to an overall efficiency of around 40%. Upon reaching the country of destination,
166 it may be injected in the natural gas grid and delivered to the final consumer or

167 alternatively and, where available, transport can be done using a hydrogen gas grid. A
168 major challenge related to this hydrogen pathway apart from the low efficiency is the
169 absence of existing infrastructure (i.e., liquefaction plants, gasification plants, pipeline
170 networks) which implies huge costs that come on top of the large volumes of energy
171 consumed in the transport process itself.

172

173 Therefore, the direct use of hydrogen at the production site is the preferred option.
174 However, in many cases this will be a challenge since the production of hydrogen will
175 mainly be in areas with abundant cheap renewable electricity that do not necessarily
176 coincide with large industrial areas (with steel, cement, chemical, glass facilities, etc.)
177 where enormous energy demands exist. In that case, just as we do today, energy will
178 need to be transported over short and long distances and e-molecules produced from
179 CO₂ and hydrogen make a lot of sense. Therefore, in a carbon neutral society, the need
180 for CO₂ and hydrogen produced from carbon free resources will be massive to supply
181 industrial heat, chemicals, and mobility while serving as a storage and transport medium
182 for excess electricity generated in remote locations.


183

184 **2.2 We should not decarbonise but de-fossilise**

185

186 Therefore, the negative connotation that carbon and CO₂ receive needs to be reversed
187 and carbon and CO₂ should be seen as a resource. Many companies have announced
188 their ambitions in terms of 'decarbonisation' whilst it would be more relevant to state
189 ambitions in terms of 'defossilisation' or 'carbon neutrality' since carbon will remain

190 crucial in our society. No (fossil) carbon should be added to the atmosphere but using
191 carbon in a circular way will be required to meet the climate ambitions.

192

193 *Figure 2 Different chemical and biological pathways exist to produce a wide variety of CO₂-based e-*
194 *molecules, which can serve as building materials, fuels, chemicals, nutrients, or direct use*

195

196 Figure 2 shows that CO₂ is a versatile feedstock. A wide variety of technologies exist with
197 technological maturities ranging from lab experiments, small pilots or demonstrations
198 to commercial-off-the-shelf (COTS) options. IEA indicates that 75% of the emission
199 reductions to reach the carbon neutrality ambition will have to come from a host of
200 technologies that are not yet mature (IEA, 2020). They must not be invented from
201 scratch, but they will need to be scaled-up rapidly from laboratories to pilots, then
202 demonstrators, and finally into the market of real industrial processes. This holds for
203 many CCU technologies to be industrialised, especially bio-based technologies.

204

205 Mineral carbonation (Figure 2) refers to the conversion of alkaline materials such as
206 magnesium or calcium oxides with CO₂ into solid carbonates. CO₂-curing of cement into
207 concrete is a mineralisation technology whereby CO₂ partially replaces water (0.02 – 3
208 wt%) for the hardening of concrete through a process called carbonation. The biological
209 conversion depicted in Figure 2 consists of the use of autotrophic microorganisms that
210 can fix and reduce CO₂ into biomass and products.

211

212 Thermal catalytic hydrogenation of CO₂/CO occurs at high temperatures and pressures
213 using metal / metal oxide-based catalysts. Two pathways exist i.e. by direct or indirect
214 hydrogenation (production of syngas via Reverse Water Gas Shift). The electrochemical
215 reduction of CO₂ refers to the direct reduction of CO₂/CO using electricity in an
216 electrolyser configuration (similar to a water electrolyser for H₂ production), either at
217 low (<100 °C) or high (700-850 °C) temperatures.

218

219 In Photo-Electrochemical reduction, solar light irradiation is directly used as energy
220 source to convert CO₂ into selective gaseous and liquid products. This is referred to as
221 “artificial photosynthesis” because it mimics nature’s energy cycle. Photo-
222 Electrochemical reduction of CO₂ (PEC) integrates the benefits of both electrocatalytic
223 and photocatalytic conversion. It can be implemented using four reactor configurations:
224 photoanode/dark cathode, dark anode/photocathode, photoanode/photocathode, and
225 hybrid PEC-solar cell tandem. Solar chemistry may be the most appropriate terminology
226 to describe these closely related solar-to-chemical energy conversion processes.

227

228 CO₂ has a very low Gibbs free energy, it has a high thermodynamic stability and high
229 degree of oxidation, which means significant energy inputs and catalysts are needed to
230 convert CO₂ into fuels/chemicals such as formic acid, CO, methane, and methanol. This
231 stability, making it hard to convert CO₂ into a fuel, is also what makes it a long-lived
232 atmospheric constituent once emitted. Due to electrification of mobility and industry
233 wherever feasible, an increasing amount of electricity will be required. On top, even
234 more electricity will be needed to serve as a basis to make hydrogen and other derived
235 e-molecules.

236

237 One important exception is the reaction by which CO₂ is the mineralisation/carbonation
238 pathway which is exothermic and thus releases energy. All reactions can use catalysts to
239 speed up the kinetics, but this is particularly useful for the mineralisation reaction, which
240 under natural conditions takes years/decades.

241

242 Mineralisation and thermal catalytic hydrogenation processes are quite mature, (large)
243 demos exist and more are under construction. Biological conversion and
244 electrochemical reduction of CO₂ is moving out of the lab (TRL 5-8) whilst photo-electric
245 chemical reduction, artificial photosynthesis and solar chemistry (TRL 2-5) are at an
246 earlier stage and under study. As these technologies aim at valorising CO₂ as a resource
247 to meet our climate ambitions, the term decarbonisation is misleading and should better
248 be turned into de-fossilisation.

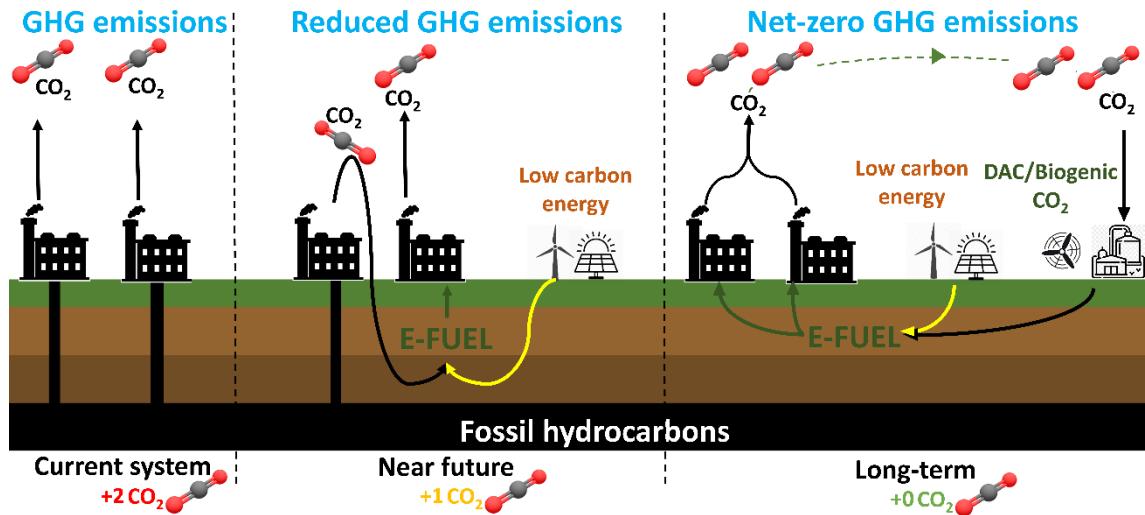
249

250 **2.3 CO₂ from industrial processes of from the air?**

251

252 Figure 3 shows how CCU and CCS are part of the 90 % emissions reduction required to
253 reach our climate goals. Carbon removal using Negative Emission Technologies is not
254 treated in this chapter but consists of a set of (Technological or Nature based) solutions
255 that take CO₂ out of the air and store it away, required to 'compensate ' for the last 10
256 % emissions.

257


258

259 *Figure 3 Two dimensions structure the technological landscape: biogenic versus fossil CO₂ and CO₂ storage*
260 *versus use. CCS of fossil fuel based CO₂ and CCU both allow emission reduction whilst carbon removal or*
261 *negative emissions can only be achieved through the storage of biogenic or atmospheric CO₂*

262

263 CCU is a powerful tool to gradually shift industries from a linear system that relies on
264 hydrocarbon extraction to a circular industrial environment where CCU, powered by
265 renewable electricity is used to valorise and displace hard-to-abate emissions (*Kätelhön*
266 *et al., 2019*). Figure 4 suggests a near-future CO₂ emission reduction of 50% for the case
267 of fossil CO₂ use and a 100% reduction in case atmospheric or biogenic CO₂ is used in

268 the long-term. However, lock-in effects should be avoided as practically all fossil CO₂
269 sources have to be phased out. CCU should only be used with hard-to-abate emissions.
270

271
272 *Figure 4 CCU using low-carbon energy is not just a delay in CO₂ emissions but can result in up to 50%*
273 *emission reduction even when fossil CO₂ is Reused*

274
275 For e-fuels (or other synthesised fuels), the source and destination of the CO₂ will
276 determine whether net-zero (or even net-negative) emissions can be reached. To reach
277 the ultimate objective of carbon negativity, the CO₂ must be biogenic (i.e. from biomass)
278 or come from DAC and then sequestered permanently (see figure 3). The synthesised e-
279 molecule avoids the need for a fossil alternative and thus prevents this molecule from
280 being extracted (Kätelhön *et al.*, 2019). So, if low-carbon energy inputs are used, CCU
281 can reduce or eliminate GHG emissions in absolute terms, which means the statement
282 that CCU is just a delay of the CO₂ emissions is not correct. Nevertheless, CCU should
283 not be employed to extend the lifetime of avoidable fossil CO₂ sources and avoid lock-
284 in effects.

285

286 The emission reduction related to CCU e-fuels will be lower than 100% (biogenic CO₂)
287 and 50% (fossil CO₂) due to greenhouse gas emissions of the Carbon Capture and e-fuel
288 production process. An example in *Mertens et al., 2023* demonstrates that emissions
289 savings can reach 88 to 90% for the case of e-methane production from biogenic CO₂
290 and green hydrogen made from wind power. Overall, in contrast to what is commonly
291 expressed, CCU using fossil CO₂ from hard-to-abate fossil sources (and low-carbon
292 electricity!) can reduce emissions and may make sense for initiating the industry
293 transition and developing the supply chain for lifecycle carbon management.

294

295 Although the overall level of knowledge about CCU technology is low (*Arning et al.,*
296 *2021*), the perceived lack of sustainability of CCU is one major barrier to its acceptance
297 (*Arning et al., 2020*). This, though, is based on the social perception that CCU is a pretext
298 for "dirty industries" to continue emitting CO₂ and that it would cannibalise investments
299 in the development of other more sustainable technologies.

300

301 **3. From Emissions to resources: increasing need for raw**
302 **materials**

303

304 On our journey towards carbon neutrality through the reduction of greenhouse gas
305 emissions, we must tackle the growing resource challenge related to critical raw
306 materials (CRMs). Although there is no geological shortage as such, having access to
307 these materials in a 'sustainable' way is crucial to succeed in the energy transition.

308 ‘Sustainable’ is not only related to having enough materials available but also refers to
309 further improving the environmental and social impacts of mining and material lifecycle
310 activities (e.g., mining, refining, recycling, ...) (*Farjana et al., 2019*). As new mining
311 locations are being explored, lower metal grade ores are considered which increases the
312 need for energy, water and chemicals and thus the environmental impact of mining
313 activities (*Global Resources Outlook, 2019*). Clean energy technologies and sustainable
314 raw materials thus become very much dependent on each other. Finally, more attention
315 should be given to the social impact of mining activities, especially the labour conditions
316 and human health impact (*Sovacool et al., 2020*).

317

318 The IEA, 2022 alerts to a mismatch between the amount of materials (in particular Li, Co,
319 and Cu) required to meet climate ambitions and the amount of these metals that are
320 today available from operating mines even when complemented with mines that are
321 today under construction. A review of historical lead times for nickel mine development
322 over the last three decades, based on 67 mines, indicates that the time elapsed between
323 the start of the exploration campaign and the beginning of commercial production has
324 significantly increased with the median shifting from 8 to 12 years (*Heijlen et al., 2021*).
325 It is clear that this cannot be solved by the development of new, land-based mines alone.
326 Finally, the concentration of mining activities in a few countries is not the only concern:
327 materials refining and processing them into components for clean energy technologies
328 is dominated by China. Despite having sufficient supply on a planetary scale,
329 synchronizing materials supply and demand coupled to strategic autonomy raises
330 frictions that require complementary solution pathways.

331

332 An extensive literature exists on the challenges related to the availability of critical raw
333 materials for renewable energies (*Lundaev et al. ,2023*). But, only few studies report on
334 the portfolio of mitigation options that could overcome these challenges. *Mertens et al.*,
335 2024 attempt to fill this gap whereby they focus on four renewable energy technologies
336 (both for electrification and molecules): solar photovoltaics (PV), wind turbines, Li-ion
337 batteries for large-scale electricity storage, and water electrolyzers. Four mitigation
338 pathways are proposed to reduce supply chain vulnerability on critical raw materials and
339 to increase the likelihood of achieving our climate ambitions: (i) material intensity
340 reduction and hence material efficiency increase, (ii) substitutivity, (iii) recycling and
341 eco-design for recyclability and (iv) re-localization. Here, we focus only on the first two,
342 i.e. the material efficiency and substitutivity pathways since they seem most promising
343 in the short run.

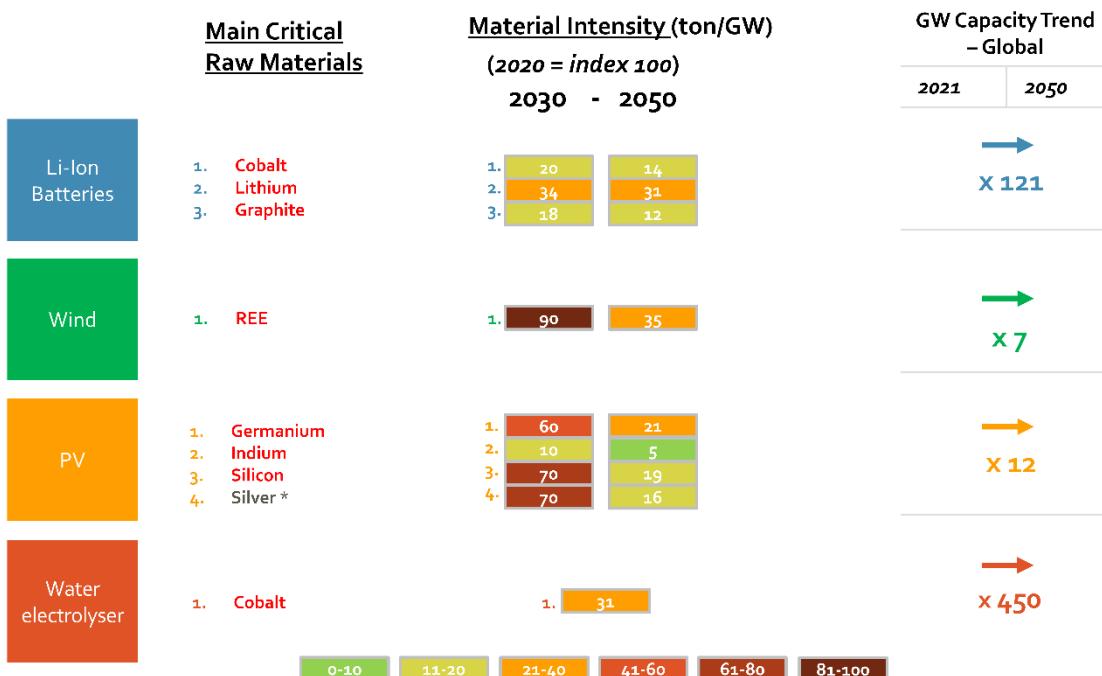
344

345 Even though recycling should ultimately dominate the CRM supply chain, we can expect
346 recycling to scale up steadily but gradually over the next 15 years given the supply –
347 demand frictions of recyclable, used product. Until then, clean energy assets will mainly
348 be built from ‘primary’ raw materials. The rather slow pace at which recycling is kicking
349 in, is mainly driven by the availability of sufficient end-of-life clean energy assets and
350 longer product life cycles than originally foreseen (e.g., longer lifetimes of PV assets,
351 second life of EV batteries for stationary storage applications, ...). Moreover, the
352 recycling process technologies have not yet reached their dominant design phase.
353 Competing technologies for Li-ion battery recycling exist, combining shredding to black
354 mass or not, hydrometallurgy and pyrolysis, pyrometallurgy, ... while battery metal
355 compositions have different degrees of recyclability (e.g., LFP versus NMC). Their

356 environmental impact and economic value must be assessed while investments must be
357 made ahead of the battery recycling curve (*Adhikari et al., 2023*).

358

359 The last pathway, namely re-localization, intends to bring the production of clean energy
360 technologies closer to where they are deployed. Mining, but even more so, the refining
361 and manufacturing activities of materials and components for clean energy technologies
362 is mostly dominated by China. Recently, the US and EU have designed policies to reduce
363 this dependence on one country. In the EU, the Critical Raw Material Act (CRMA) aims
364 at securing the supply of critical raw materials, mitigating risks to Europe's strategic
365 dependencies while boosting its autonomy, by promoting refining, processing and
366 recycling whilst the Net Zero Industry Act (NZIA) should boost the manufacturing
367 capacity of technologies to support the clean energy transition and to release extremely
368 low, zero or even negative greenhouse gas emissions. In the US, the Inflation Reduction
369 Act (IRA) offers funding, programs, and incentives to accelerate the transition to a clean
370 energy economy.


371

372 **3.1 Material efficiency: can we do the same with less material?**

373

374 Figure 5 presents the expected efficiency gains computed by the European Commission
375 (*European Commission, 2020*) for a selected number of CRM that play an important role
376 in the manufacturing processes of the four clean energy technologies highlighted in this
377 chapter. Reductions of material use (expressed in ton per GW of manufactured asset)
378 between 65-95% are expected between now and 2050. This reduction is substantial and
379 is mainly driven by scale effects and understood efficiency improvements (i.e., doing the

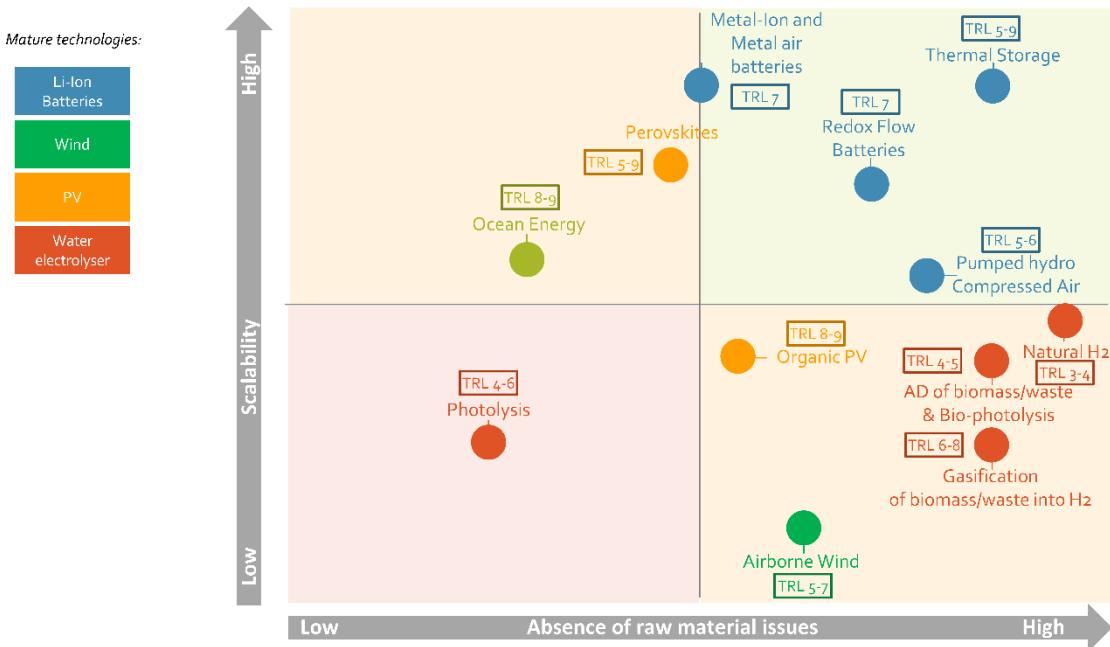
380 same with less material), no disruptive technology changes are required. As pressures on
 381 CRM availability and cost increase, the efficiency gains expected today are possibly
 382 underestimated. Though, as shown in the right column of Figure 5, comparing these
 383 reductions to the enormous amounts of material required to meet the energy transition
 384 ambitions (IEA, 2022), shows that material efficiency alone will not solve the challenge.
 385 Moreover, the IEA estimations of the global installed capacity presented in figure 5 may
 386 be an underestimation with a factor 4 or 5, for example for PV (Haegel *et al.*, 2023).
 387 However, a lot is to be expected from material efficiency and it will be an important lever
 388 in solving the supply chain challenge of CRM, while it cannot be the sole answer to the
 389 challenge.

390
 391 *Figure 5 Material efficiency for a selection of CRM between 2020 and 2050 (2040 in case of electrolyzers)*
 392 *expressed in tons of material used per GW of manufactured asset (European Commission, 2020) compared*
 393 *to the foreseen increase in installed capacity required to meet our climate ambitions (IEA, 2022). (The*
 394 *asterisk (*) indicates that silver is not listed as CRM in the 2023 list of EU CRM (European Commission*
 395 *2023) but is still included due to its important role and related cost in the production of silicon-based PV*
 396 *panels)*

397

398 **3.2 Substitutivity: can we replace the critical material with an**
399 **earth abundant material or switch technology?**

400


401 Substituting one critical material for another, earth abundant material is increasingly
402 considered to reduce material supply chain issues. A famous example is TESLA switching
403 from nickel, manganese, and cobalt (NMC) based Li-ion batteries towards lithium, iron,
404 and phosphate (LFP) based Li-ion batteries stressing the absence of cobalt as CRM. The
405 European criticality methodology takes substitution of a material for another more earth
406 abundant material into account. The correction factor is a function of the loss in material
407 efficiency this may cause (i.e., lower energy density of LFP batteries versus NMC
408 batteries). Another example of material substitution is the research to replace silver with
409 copper or aluminium in silicon-based PV (*Haegel et al., 2023*). For wind turbines, the
410 CRM challenge is related to the Rare Earth Elements in permanent magnet-based wind
411 turbines.

412

413 Instead of material substitution, we can think of switching to an alternative (and usually
414 less mature) technology providing the same or similar energy services. Figure 6 presents
415 a qualitative analysis for various alternatives to the four mature clean energy
416 technologies considered in this chapter where we estimate the vulnerability of the
417 critical material supply chains and their 'scalability'. A technology is considered 'scalable'
418 if we estimate that it can substantially grow by 2035 and could become a major
419 complement or substitute to the incumbent mature technology. Technologies in the
420 upper right corner of the figure present alternative technologies that are both scalable

421 and are less vulnerable to the CRM supply chain challenges. It is interesting that the four
422 technologies found in this top right corner are alternatives for large-scale stationary
423 electricity storage using Li-ion batteries. This implies that in case supply chain issues for
424 batteries would arise, alternative technologies exist that could be scaled up rather fast
425 and which are less vulnerable to CRM issues. For the well-developed silicon-based PV,
426 perovskites can be rather scalable if we can solve their stability, though still a lot of CRM
427 are required. For organic PV, we expect far less CRM challenges but question their
428 scalability according to the above definition. However, the two possible substitutions
429 are rather theoretical as the silver case is considered as no major challenge (*Haegel et*
430 *al., 2023*). As for water electrolysis to produce hydrogen, most alternative technologies
431 are not CRM sensitive but not one technology is evaluated as scalable. However, for
432 alkaline water electrolysis no material limitation has been reported. Finally, airborne
433 wind requires far less materials than traditional wind turbines, but its scalability is
434 evaluated too low to be a valid alternative technology. Wind turbines using no Rare
435 Earth Elements are well established and can be scaled, even the potentially limited
436 copper could be substituted with aluminum. For ocean energy that could complement
437 or replace both wind turbines and solar PV, technologies are quite diverse and require
438 CRMs whilst none of them are today scalable. A breakthrough is needed for ocean
439 energy to play a significant role in the energy transition.

440

441

442 *Figure 6 Qualitative evaluation of scalability and CRM vulnerability of alternatives to the mature*
 443 *technologies considered in this study (stationary storage using Li-ion batteries, silicon-based PV, wind*
 444 *turbines and water electrolysis).*

445

446 Increased research and innovation are required to cope with supply-demand
 447 mismatches in CRMs. We should not only raise awareness on the supply chain risks.
 448 There is enough literature doing that today. But more important, we should spread the
 449 message that complementary pathways to mitigate this risk exist and we should
 450 accelerate their development.

451

452 **4. Conclusion**

453

454 Scientific evidence suggests that to achieve climate goals, CO₂ emissions must be
 455 reduced by over 90%. The consensus on this reduction prioritizes increasing energy
 456 efficiency, expanding renewable electricity production, and maintaining the need for

457 molecules in high-energy-density processes. Hydrogen is a key e-molecule but suffers
458 from storage and transport challenges. Converting it to high-energy-density
459 hydrocarbons using CO₂ makes a lot of sense. This is especially true for applications
460 requiring high energy density, such as shipping, aviation, high-temperature processes,
461 and feedstock for chemistry. CO₂ will therefore be a critical resource in the energy
462 transition.

463 This transition to carbon neutrality presents a challenge due to the use and demand for
464 critical raw materials (CRMs) in renewable energy technologies. Material efficiency and
465 substitutivity are presented as two short term mitigations to reduce our supply chain
466 vulnerability. However, on top of the materials' availability challenge, when striving for
467 carbon neutrality, we must address the environmental and social impacts of material
468 lifecycle activities. This includes improving the environmental footprint of mining
469 activities and reducing their water and chemical requirements.

470 Every step taken towards carbon neutrality is a step towards a sustainable and resilient
471 future. We must continue to innovate, adapt, and join forces to turn this vision into
472 reality.

473

474

475

476

477

478

479 **References**

480

- 481 Adhikari, B., N. A. Chowdhury, L. A. Diaz, H. Jin, A. K. Saha, M. Shi, J. R. Klaehn, and T. E.
482 Lister, 2023. Electrochemical leaching of critical materials from lithium-ion
483 batteries: A comparative life cycle assessment. *Resources, Conservation and*
484 *Recycling*, 193, 106973, <https://doi.org/10.1016/j.resconrec.2023.106973>
- 485 Arning, K., J. Offermann-van Heek, A. Sternberg, A. Bardow, and M. Ziefle, M., 2020. Risk-
486 benefit perceptions and public acceptance of Carbon Capture and Utilization.
487 *Environmental Innovation and Societal Transitions*, 35, 292-308
- 488 Arning, K., J. Offermann-van Heek, and M. Ziefle, 2021. What drives public acceptance
489 of sustainable CO₂-derived building materials? A conjoint-analysis of eco-benefits
490 vs. health concerns. *Renewable and Sustainable Energy Reviews*, 144, 110873
- 491 Breyer, C., S. Khalili, D. Bogdanov , M. Ram , A. S. Oyewo, A. Aghahosseini , A. Gulagi , A.
492 A. Solomon, D. Keiner, G. Lopez, P. A. Østergaard, H. Lund, B. V. Mathiesen, M. Z.
493 Jacobson, M. Victoria, S. Teske, T. Pregger, V. Fthenakis, M. Raugei, H. Holttinen, U.
494 Bardi, A. Hoekstra and B. K. Sovacool, 2022. On the History and Future of 100%
495 Renewable Energy Systems Research, *IEEE Access*, vol. 10, pp. 78176-78218, doi:
496 [10.1109/ACCESS.2022.3193402](https://doi.org/10.1109/ACCESS.2022.3193402)
- 497 European Commission, 2020. Critical Raw Materials for Strategic Technologies and
498 Sectors in the EU: A Foresight Study.
499 [CRMs for Strategic Technologies and Sectors in the EU 2020.pdf](https://ec.europa.eu/programmes/erasmus_plus/pdf/critical_raw_materials_for_strategic_technologies_and_sectors_in_the_eu_2020.pdf)
500 [europa.eu](https://ec.europa.eu)

- 501 European Commission, 2023. Study on the Critical Raw Materials for the EU 2023: Final
502 Report.
- 503 Farjana, S. H., N. Huda, M.A. Parvez Mahmud and R. Saidur, 2019. A review on the impact
504 of mining and mineral processing industries through life cycle assessment. *Journal
505 of Cleaner Production*, 231, 1200 – 1217,
506 <https://doi.org/10.1016/j.jclepro.2019.05.264>
- 507 Global Resources Outlook, 2019: Natural Resources for the Future We Want. A Report
508 of the International Resource Panel. United Nations Environment Programme.
509 Nairobi, Kenya. <https://www.resourcepanel.org/reports/global-resources-outlook>
- 510 Haegel, N.M., P. Verlinden, M. Victoria, P. Altermatt, H. Atwater, T. Barnes, C. Breyer, C.
511 Case, S. De Wolf, C. Deline, M. Dharmrin, B. Dimmler, M. Gloeckler, J. C.
512 Goldschmidt, B. Hallam, S. Haussener, B. Holder, U. Jaeger, A. Jaeger-Waldau, I.
513 Kaizuka, H. Kikusato, B. Kroposki, S. Kurtz, K. Matsubara, S. Nowak, K. Ogimoto, C.
514 Peter, I. M. Peters, S. Philipps, M. Powalla, U. Rau, T. Reindl, M. Roumpani, K.
515 Sakurai, C. Schorn, P. Schossig, R. Schlatmann, R. Sinton, A. Slaoui, B. L. Smith, P.
516 Schneidewind, B.J. Stanbery, M. Topic, W. Tumas, J. Vasi, M. Vetter, E. Weber, A.
517 W. Weeber, A. Weidlich, D. Weiss and A. W. Bett. 2023. Photovoltaics at multi-
518 terawatt scale: Waiting is not an option. *Science*, 380, 6640, 39-42
- 519 Heijlen, W., G. Franceschi, C. Duhayon and K. Van Nijen, 2021. Assessing the adequacy
520 of the global land-based mine development pipeline in the light of future high-
521 demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co).
522 Resources Policy, [10.1016/j.resourpol.2021.102202](https://doi.org/10.1016/j.resourpol.2021.102202)

- 523 IEA, 2020. Energy Technology Perspectives 2020. <https://www.iea.org/reports/energy-technology-perspectives-2020>
- 524
- 525 IEA, 2022. IEA World Energy Outlook. Flagship IEA report, October 2022. [World Energy](#)
- 526 [Outlook 2022 – Analysis - IEA](#)
- 527 IEA, 2022. The Role of Critical World Energy Outlook Special Report Minerals in Clean
- 528 Energy Transitions. IEA report, updated version March 2022.
- 529 [https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-](https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions)
- 530 [transitions](#)
- 531 IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I,
- 532 II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate
- 533 Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva,
- 534 Switzerland, 184 pp., doi: 10.59327/IPCC/AR6-9789291691647
- 535 Kätelhön, A., R. Meys, S. Deutz, S. Suh and A. Bardow, 2019. Climate change mitigation
- 536 potential of carbon capture and utilization in the chemical industry. *PNAS*, 116, 23,
- 537 11187-11194
- 538 Lundaev V., A. A. Solomon, T. Le, A. Lohrmann and C. Breyer C., 2023. Review of critical
- 539 materials for the energy transition, an analysis of global resources and production
- 540 databases and the state of material circularity, *Minerals Engineering*, in press

541 Mertens, J., C. Breyer, K. Arning, A. Bardow, R. Belmans, A. Dibenedetto, S. Erkman, J.
542 Gripekoven, G. Léonard, S. Nizou, D. Pant, A.S. Reis-Machado, P. Styring, J. Vente,
543 M. Webber and C. J. Sapart, 2023. Carbon Capture and Utilisation: More than hiding
544 CO₂ for some time. *Joule*, <https://doi.org/10.1016/j.joule.2023.01.005>

545 Mertens, J., J. Dewulf, C. Breyer, R. Belmans, C. Gendron, P. Geoffron, L. Goossens, C.
546 Fischer, E. Du Fornel, K. Hayhoe, K. Hirose, E. Le Cadre-Loret, R. Lester, F. Maigné,
547 H. Maitournam, P. E. Valadão de Miranda, P. Verwee, O. Sala, M. Webber and K.
548 Debackere, 2024. From emissions to resources: mitigating the critical raw material
549 supply chain vulnerability of renewable energy technologies, *Mineral Economics*,
550 <https://doi.org/10.1007/s13563-024-00425-2>

551 Mertens, J., R. Belmans and M. Webber, 2020. Why the carbon neutral transition will
552 imply the use of lots of carbon. *C-Journal of Carbon Research*, 6 (39), 1-8

553 Sovacool, B.K., S.H. Ali, M. Bazilian, B. Radley, B. Nemery, J. Okatz and D. Mulvaney,
554 2020. Sustainable minerals and metals for a low-carbon future. *Science*, 367, 6473,
555 30-33, DOI: 10.1126/science.aaz6003

556 Wang , S., Z. Hausfather , S. Davis , J. Lloyd, E. B. Olson, L. Liebermann, G. D. Núñez-
557 Mujica and J. McBride, 2023. Future demand for electricity generation materials
558 under different climate mitigation scenarios. *Joule*,
559 <https://doi.org/10.1016/j.joule.2023.01.001>

560 Yin, L. and Y. Ju, 2019. Review on the design and optimization of hydrogen liquefaction
561 processes. *Front. Energy*, 13, 1–15.

562